Coclustering—a useful tool for chemometrics
نویسندگان
چکیده
Nowadays, chemometric applications in biology can readily deal with tens of thousands of variables, for instance, in omics and environmental analysis. Other areas of chemometrics also deal with distilling relevant information in highly information-rich data sets. Traditional tools such as the principal component analysis or hierarchical clustering are often not optimal for providing succinct and accurate information from high rank data sets. A relatively little known approach that has shown significant potential in other areas of research is coclustering, where a data matrix is simultaneously clustered in its rows and columns (objects and variables usually). Coclustering is the tool of choice when only a subset of variables is related to a specific grouping among objects. Hence, coclustering allows a select number of objects to share a particular behavior on a select number of variables. In this paper, we describe the basics of coclustering and use three different example data sets to show the advantages and shortcomings of coclustering. Copyright © 2012 John Wiley & Sons, Ltd.
منابع مشابه
Olfactory Classification via Interpoint Distance Analysis
ÐDetection of the presence of a single prespecified chemical analyte at low concentration in complex backgrounds is a difficult application for chemical sensors. This article considers a database of artificial nose observations designed specifically to allow for the investigation of chemical sensor data analysis performance on the problem of trichloroethylene (TCE) detection. We consider an app...
متن کاملChemometrics and its Application in Pharmaceutical Field
Chemometrics is the application of statistical and mathematical methods to analytical data to permit maximum collection and extraction of useful information. It is a data-driven interdisciplinary science suitable for solving diverse applications. This review focuses mainly on various chemometric models used and their applications in the pharmaceutical sciences.
متن کاملChemometrics: A new scenario in herbal drug standardization
Chromatography and spectroscopy techniques are the most commonly used methods in standardization of herbal medicines but the herbal system is not easy to analyze because of their complexity of chemical composition. Many cutting-edge analytical technologies have been introduced to evaluate the quality of medicinal plants and significant amount of measurement data has been produced. Chemometric t...
متن کاملA New Simultaneous Two-Levels Coclustering Algorithm for Behavioural Data-Mining
Clustering is a very powerful tool for automatic detection of relevant sub-groups in unlabeled data sets. It can be sometime very interesting to be able to regroup and visualize the attributes used to describe the data, in addition to the clustering of these data. In this paper, we propose a coclustering algorithm based on the learning of a Self Organizing Map. The new algorithm will thus be ab...
متن کامل3D-QSAR Modeling of Anti-oxidant Activity of some Flavonoids
The anti-oxidant activities for a diverse set of flavonoids as TEAC (Trolox equivalent anti-oxidant capacity), assay were subjected to 3D-QSAR (3 dimensional quantitative structural-activity relationship) studies using CoMFA (comparative molecular field analysis) and CoMSIA (comparative molecular similarity indices analysis). The obtained results indicated superiority of CoMSIA model over CoMFA...
متن کامل